I really like this heapless
. It sort of helps to implement my strategy for developing Rust programs:
1.Maximize no_std
surface. 2 Minimize heap allocations.
It is easier to see then the hot zones where the program actually dynamically grows for a good reason, similarly as with unsafe
blocks it is easy to the red zones for memory errors. This helps a lot with availability and protection against denial-of-service (DoS) attacks.
So to summarize I don’t split Rust program in my mind just to “unsafe” and “safe” but instead I split it “unsafe”, “static” and “dynamic”, or along the lines.
really like this fsmetry
crate (also no_std
):
fsmentry::dsl! {
#[derive(Debug)]
pub Mode {
WaitingInput -> WaitingCommand -> WaitingInput;
WaitingCommand -> SendingFile -> WaitingInput;
WaitingCommand -> ReceivingFile -> WaitingInput;
WaitingCommand -> Exit;
}
}
I use it manage life-cycle in my small serial port tool tior
. I also have some #zmodem code together but it is apparently much bigger leap to implement the #cli interface than it is to implement the protocol. I had to take some time to refactor existing code (e.g. to put FSM in place) and now I’m doing file path auto-completing interface for sending and receiving files with zmodem.
For the text input I’m going to use inquire.
I guess the definition of feature complete for 0.1 version is fully working zmodem transfers and known bugs have been fixed. Right now there is a single known bug: https://github.com/jarkkojs/tior/issues/1.
i guess i could create a completely new crate to the crate ecosystem called rmodem
with initially just with ZCBIN implementation but sort of BufReader/Writer approach towards integration.